Computer Networks And Communications Assignment Discovery

Foreword Preface

PART I - INTRODUCTORY NETWORK DESIGN

Chapter 1 - Overview 1.1 A Network Analogy 1.2 Communication and Computer Networks, and Network Providers 1.3 Notion of Traffic and Traffic Demand 1.4 A Simple Design Example 1.5 Notion of Routing and Flows 1.6 Architecture of Networks: Multi-Layer Networks 1.7 Network Management Cycle 1.8 Scope of the Book 1.9 Naming and Numbering Convention 1.10 Summary

Chapter 2 - Network Design Problems—Notation and Illustrations 2.1 A Network Flow Example in Link-Path Formulation 2.2 Node-Link Formulation 2.3 Notions and Notations 2.4 Dimensioning Problems 2.5 Shortest-Path Routing 2.6 Fair Networks 2.7 Topological Design 2.8 Restoration Design 2.9 *Multi-Layer Networks Modeling 2.10 Summary Exercises for Chapter 2

Chapter 3 - Technology-Related Modeling Examples 3.1 IP Networks: Intra-Domain Traffic Engineering 3.2 MPLS Networks: Tunneling Optimization 3.3 ATM Networks: Virtual Path Design 3.4 Digital Circuit-Switched Telephone Networks: Single–Busy Hour and Multi–Busy Hour Network Dimensioning 3.5 SONET/SDH Transport Networks: Capacity and Protection Design 3.6 SONET/SDH Rings: Ring Bandwidth Design 3.7 WDM Networks: Restoration Design with Optical Cross-Connects 3.8 IP Over SONET: Combined Two-Layer Design 3.9 Summary and Further Reading Exercises for Chapter 3

PART II - DESIGN MODELING AND METHODS

Chapter 4 - Network Design Problem Modeling 4.1 Basic Uncapacitated and Capacitated Design Problems 4.2 Routing Restrictions 4.3 Non-Linear Link Dimensioning, Cost, and Delay Functions 4.4 Budget Constraint 4.5 Incremental NDPs 4.6 Extensions of Problem Modeling 4.7 Summary and Further Reading Exercises for Chapter 4

Chapter 5 - General Optimization Methods for Network Design 5.1 Linear Programming 5.2 Mixed-Integer Programming 5.3 Stochastic Heuristic Methods 5.4 LP Decomposition Methods 5.5 Gradient Minimization and Other Approaches for Convex Programming Problems 5.6 Special Heuristics for Concave Programming Problems 5.7 Solving Multi-Commodity Flow Problems 5.8 Summary and Further Reading Exercises for Chapter 5

Chapter 6 - Location and Topological Design 6.1 Node Location Problem 6.2 Joint Node Location and Link Connectivity Problem 6.3 Topological Design 6.4 Lower Bounds for Branch-and-Bound 6.5 Summary and Further Reading Exercises for Chapter 6

Chapter 7 - Networks With Shortest-Path Routing 7.1 Shortest-Path Routing Allocation Problem 7.2 MIP Formulation of the Shortest-Path Routing Allocation Problem and Dual Problems 7.3 Heuristic Direct Methods for Determining the Link Metric System 7.4 Two-Phase Solution Approach 7.5 Impact Due to Stochastic Approaches 7.6 Impact of Different Link Weight System 7.7 Impact on Different Performance Measures 7.8 Uncapacitated Shortest-Path Routing Problem 7.9 Optimization of the Link Metric System under Transient Failures 7.10 NP-Completeness of the Shortest-Path Routing Allocation Problem 7.11 Selfish Routing and its Relation to Optimal Routing 7.12 Summary and Further Reading Exercises for Chapter 7

Chapter 8 - Fair Networks 8.1 Notions of Fairness 8.2 Design Problems for Max-Min Fairness (MMF) 8.3 Design Problems for Proportional Fairness (PF) 8.4 Summary and Further Reading Exercises for Chapter 8

PART III - ADVANCED MODELS

Chapter 9 - Restoration and Protection Design of Resilient Networks 9.1 Failure States, Protection/Restoration Mechanisms, and Diversity 9.2 Link Capacity Protection/Restoration 9.3 Demand Flow Re-Establishment 9.4 Extensions 9.5 Protection Problems 9.6 Applicability of the Protection/Restoration Design Models 9.7 Summary and Further Reading Exercises for Chapter 9

Chapter 10 - Application of Optimization Techniques for Protection and Restoration Design 10.1 Path Generation 10.2 Lagrangian Relaxation (LR) With Subgradient Maximization 10.3 Benders’ Decomposition 10.4 Modular Links 10.5 Stochastic Heuristic Methods 10.6 *Selected Application: Wavelength Assignment Problem in WDM Networks 10.7 Summary and Further Reading Exercises for Chapter 10

Chapter 11 - Multi-Hour and Multi–Time-Period Network Modeling and Design 11.1 Multi-Hour Design 11.2 Multi-Period Design 11.3 Summary and Further Reading Exercises for Chapter 11

Chapter 12 - Multi-Layer Networks: Modeling and Design 12.1 Design of Multi-Layer Networks 12.2 Modeling of Multi-Layer Networks for Restoration Design 12.3 Multi-Layer Design With Multi-Hour Traffic 12.4 Application of Decomposition Methods for Two-Layer Design 12.5 Numerical Results 12.6 Cost Comparison 12.7 Grooming/Multiplex Bundling 12.8 Summary and Further Reading Exercises for Chapter 12

Chapter 13 - Restoration Design of Single- and Multi-Layer Fair Networks 13.1 Restoration Design of Single-Layer PF Networks 13.2 Decomposition Methods for the Single-Layer Restoration Problems 13.3 Design of Resilient Two-Layer PF Networks 13.4 Extensions 13.5 Summary and Further Reading Exercises for Chapter 13

APPENDICES

Appendix A - Optimization Theory Refresher A.1 Basic Notions A.2 Karush-Kuhn-Tucker (KKT) Optimality Conditions A.3 Interpretation of the Lagrange Multipliers in the KKT Conditions A.4 Numerical Methods for Finding Minima of Differentiable Problems A.5 Duality A.6 Duality for Convex Programs A.7 Duality for Convex Objective and Linear Constraints A.8 Subgradient Maximization of the Dual Function A.9 Subgradient Maximization of the Dual Function of Linear Programming Problems

Appendix B - Introduction to Complexity Theory and NP-Completeness B.1 Introduction B.2 Complexity of a Problem B.3 Deterministic and Non-Deterministic Machines B.4 The Classes of Problems Known as P and NP B.5 Reducibility Relation between Problems B.6 The Class of NP-Complete Problems B.7 The Satisfiability Problem and Cook’s Theorem B.8 Network Flow Problems B.9 Final Remarks

Appendix C - Shortest-Path Algorithms C.1 Introduction and Basic Notions C.2 Basic Shortest-Path Problem C.3 K-Shortest Paths and All Optimal Paths C.4 Shortest Sets of Disjoint Paths

Appendix D - Using LP/MIP Packages D.1 Solving Linear Programming Problems using Maple, Matlab, and CPLEX D.2 Solving (Mixed) Integer Programming Problems Using CPLEX D.3 Modeling Using AMPL D.4 Final Remark

List of Acronyms Solutions to Selected Exercises Bibliography Index

Weihua Zhouang

Professor at University of Waterloo

Dr. Zhuang is a Fellow of the IEEE, Royal Society of Canada (RSC), Canadian Academy of Engineering (CAE), and Engineering Institute of Canada (EIC). She received the Outstanding Performance Award, University of Waterloo, for outstanding achievements in teaching, scholarship, and service, 2011 and Marsland Fellowship, Faculty of Engineering, University of Waterloo, for demonstrated exceptional achievements in research, teaching, and dedication to the Department and the University, 2008

Professor Weihua Zhuang has demonstrated outstanding research track record, dedicated service and exceptional leadership in the international research community, and strong commitment in mentoring and training of future engineers and scientists. She is a truly outstanding N2Women Star and role model in computer networking and communications.

– Sumei Sun, Institute for Infocomm Research

0 thoughts on “Computer Networks And Communications Assignment Discovery

Leave a Reply

Your email address will not be published. Required fields are marked *