Random Assignment Definition Statistics Population

In descriptive studies, it is customary to define a study population and then make observations on a sample taken from it. Study populations may be defined by geographic location, age, sex, with additional definitions of attributes and variables such as occupation, religion and ethnic group.[1]

Geographic location

In field studies, it may be desirable to use a population defined by an administrative boundary such as a district or a state. This may facilitate the co-operation of the local administrative authorities and the study participants. Moreover, basic demographic data on the population such as population size, age, gender distribution (needed for calculating age- and sex-specific rates) available from census data or voters’ list are easier to obtain from administrative headquarters. However, administrative boundaries do not always consist of homogenous group of people. Since it is desirable that a modest descriptive study does not cover a number of different groups of people, with widely differing ways of life or customs, it may be necessary to restrict the study to a particular ethnic group, and thus ensure better genetic or cultural homogeneity. Alternatively, a population may be defined in relation to a prominent geographic feature, such as a river, or mountain, which imposes a certain uniformity of ways of life, attitudes, and behavior upon the people who live in the vicinity.

If cases of a disease are being ascertained through their attendance at a hospital outpatient department (OPD), rather than by field surveys in the community, it will be necessary to define the population according to the so-called catchment area of the hospital OPD. For administrative purposes, a dispensary, health center or hospital is usually considered to serve a population within a defined geographic area. But these catchment areas may only represent in a crude manner with the actual use of medical facilities by the local people. For example, in OPD study of psychiatric illnesses in a particular hospital with a defined catchment area, many people with psychiatric illnesses may not visit the particular OPD and may seek treatment from traditional healers or religious leaders.

Catchment areas depend on the demography of the area and the accessibility of the health center or hospital. Accessibility has three dimensions – physical, economic and social.[2] Physical accessibility is the time required to travel to the health center or medical facility. It depends on the topography of the area (e.g. hill and tribal areas with poor roads have problems of physical accessibility). Economic accessibility is the paying capacity of the people for services. Poverty may limit health seeking behavior if the person cannot afford the bus fare to the health center even if the health services may be free of charge. It may also involve absence from work which, for daily wage earners, is a major economic disincentive. Social factors such as caste, culture, language, etc. may adversely affect accessibility to health facility if the treating physician is not conversant with the local language and customs. In such situations, the patient may feel more comfortable with traditional healers.

Ascertainment of a particular disease within a particular area may be incomplete either because some patient may seek treatment elsewhere or some patients do not seek treatment at all. Focus group discussions (qualitative study) with local people, especially those residing away from the health center, may give an indication whether serious underreporting is occurring.

When it is impossible to relate cases of a disease to a population, perhaps because the cases were ascertained through a hospital with an undefined catchment area, proportional morbidity rates may be used. These rates have been widely used in cancer epidemiology where the number of cases of one form of cancer is expressed as a proportion of the number of cases of all forms of cancer among patients attending the same hospital during the same period.

Random assignment or random placement is an experimental technique for assigning human participants or animal subjects to different groups in an experiment (e.g., a treatment group versus a control group) using randomization, such as by a chance procedure (e.g., flipping a coin) or a random number generator. This ensures that each participant or subject has an equal chance of being placed in any group. Random assignment of participants helps to ensure that any differences between and within the groups are not systematic at the outset of the experiment. Thus, any differences between groups recorded at the end of the experiment can be more confidently attributed to the experimental procedures or treatment.

Random assignment, blinding, and controlling are key aspects of the design of experiments, because they help ensure that the results are not spurious or deceptive via confounding. This is why randomized controlled trials are vital in clinical research, especially ones that can be double-blinded and placebo-controlled.

Mathematically, there are distinctions between randomization, pseudorandomization, and quasirandomization, as well as between random number generators and pseudorandom number generators. How much these differences matter in experiments (such as clinical trials) is a matter of trial design and statistical rigor, which affect evidence grading. Studies done with pseudo- or quasirandomization are usually given nearly the same weight as those with true randomization but are viewed with a bit more caution.

Benefits of random assignment[edit]

Imagine an experiment in which the participants are not randomly assigned; perhaps the first 10 people to arrive are assigned to the Experimental Group, and the last 10 people to arrive are assigned to the Control group. At the end of the experiment, the experimenter finds differences between the Experimental group and the Control group, and claims these differences are a result of the experimental procedure. However, they also may be due to some other preexisting attribute of the participants, e.g. people who arrive early versus people who arrive late.

Imagine the experimenter instead uses a coin flip to randomly assign participants. If the coin lands heads-up, the participant is assigned to the Experimental Group. If the coin lands tails-up, the participant is assigned to the Control Group. At the end of the experiment, the experimenter finds differences between the Experimental group and the Control group. Because each participant had an equal chance of being placed in any group, it is unlikely the differences could be attributable to some other preexisting attribute of the participant, e.g. those who arrived on time versus late.

Potential issues[edit]

Random assignment does not guarantee that the groups are matched or equivalent. The groups may still differ on some preexisting attribute due to chance. The use of random assignment cannot eliminate this possibility, but it greatly reduces it.

To express this same idea statistically - If a randomly assigned group is compared to the mean it may be discovered that they differ, even though they were assigned from the same group. If a test of statistical significance is applied to randomly assigned groups to test the difference between sample means against the null hypothesis that they are equal to the same population mean (i.e., population mean of differences = 0), given the probability distribution, the null hypothesis will sometimes be "rejected," that is, deemed not plausible. That is, the groups will be sufficiently different on the variable tested to conclude statistically that they did not come from the same population, even though, procedurally, they were assigned from the same total group. For example, using random assignment may create an assignment to groups that has 20 blue-eyed people and 5 brown-eyed people in one group. This is a rare event under random assignment, but it could happen, and when it does it might add some doubt to the causal agent in the experimental hypothesis.

Random sampling[edit]

Random sampling is a related, but distinct process.[1] Random sampling is recruiting participants in a way that they represent a larger population.[1] Because most basic statistical tests require the hypothesis of an independent randomly sampled population, random assignment is the desired assignment method because it provides control for all attributes of the members of the samples—in contrast to matching on only one or more variables—and provides the mathematical basis for estimating the likelihood of group equivalence for characteristics one is interested in, both for pretreatment checks on equivalence and the evaluation of post treatment results using inferential statistics. More advanced statistical modeling can be used to adapt the inference to the sampling method.


Randomization was emphasized in the theory of statistical inference of Charles S. Peirce in "Illustrations of the Logic of Science" (1877–1878) and "A Theory of Probable Inference" (1883). Peirce applied randomization in the Peirce-Jastrow experiment on weight perception.

Charles S. Peirce randomly assigned volunteers to a blinded, repeated-measures design to evaluate their ability to discriminate weights.[2][3][4][5] Peirce's experiment inspired other researchers in psychology and education, which developed a research tradition of randomized experiments in laboratories and specialized textbooks in the eighteen-hundreds.[2][3][4][5]

Jerzy Neyman advocated randomization in survey sampling (1934) and in experiments (1923).[6]Ronald A. Fisher advocated randomization in his book on experimental design (1935).

See also[edit]


  1. ^ abhttp://www.socialresearchmethods.net/kb/random.php. 
  2. ^ abCharles Sanders Peirce and Joseph Jastrow (1885). "On Small Differences in Sensation". Memoirs of the National Academy of Sciences. 3: 73–83. 
  3. ^ abIan Hacking (September 1988). "Telepathy: Origins of Randomization in Experimental Design". Isis (A Special Issue on Artifact and Experiment). 79 (3): 427–451. doi:10.1086/354775. 
  4. ^ abStephen M. Stigler (November 1992). "A Historical View of Statistical Concepts in Psychology and Educational Research". American Journal of Education. 101 (1): 60–70. doi:10.1086/444032. 
  5. ^ abTrudy Dehue (December 1997). "Deception, Efficiency, and Random Groups: Psychology and the Gradual Origination of the Random Group Design". Isis. 88 (4): 653–673. doi:10.1086/383850. PMID 9519574. 
  6. ^Neyman, Jerzy (1990) [1923], Dabrowska, Dorota M.; Speed, Terence P., eds., "On the application of probability theory to agricultural experiments: Essay on principles (Section 9)", Statistical Science (Translated from (1923) Polish ed.), 5 (4): 465–472, doi:10.1214/ss/1177012031, MR 1092986 
  • Caliński, Tadeusz & Kageyama, Sanpei (2000). Block designs: A Randomization approach, Volume I: Analysis. Lecture Notes in Statistics. 150. New York: Springer-Verlag. ISBN 0-387-98578-6. 
  • Hinkelmann, Klaus and Kempthorne, Oscar (2008). Design and Analysis of Experiments. I and II (Second ed.). Wiley. ISBN 978-0-470-38551-7. 
  • Charles S. Peirce, "Illustrations of the Logic of Science" (1877–1878)
  • Charles S. Peirce, "A Theory of Probable Inference" (1883)
  • Charles Sanders Peirce and Joseph Jastrow (1885). "On Small Differences in Sensation". Memoirs of the National Academy of Sciences. 3: 73–83. http://psychclassics.yorku.ca/Peirce/small-diffs.htm
  • Hacking, Ian (September 1988). "Telepathy: Origins of Randomization in Experimental Design". Isis. 79 (3): 427–451. doi:10.1086/354775. JSTOR 234674. MR 1013489. 
  • Stephen M. Stigler (November 1992). "A Historical View of Statistical Concepts in Psychology and Educational Research". American Journal of Education. 101 (1): 60–70. doi:10.1086/444032. 
  • Trudy Dehue (December 1997). "Deception, Efficiency, and Random Groups: Psychology and the Gradual Origination of the Random Group Design". Isis. 88 (4): 653–673. doi:10.1086/383850. PMID 9519574. 
  • Basic Psychology by Gleitman, Fridlund, and Reisberg.
  • "What statistical testing is, and what it is not," Journal of Experimental Education, 1993, vol 61, pp. 293–316 by Shaver.

External links[edit]

0 thoughts on “Random Assignment Definition Statistics Population

Leave a Reply

Your email address will not be published. Required fields are marked *